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ABSTRACT

Purpose: The early diagnosis of schizophrenia (SZ) continues to be challenging due to the
subjective nature of clinical assessments and the heterogeneity of symptoms. There is a
pressing need for objective, scalable, and non-invasive diagnostic tools to complement
traditional methods. This study proposes a machine learning (ML) framework that utilizes
dynamic effective connectivity matrices (DCM) derived from event-related potentials (ERP)
for SZ classification.

Methods: ERP data from 81 participants, including 49 SZ patients and 32 healthy controls,
sourced from a publicly accessible and anonymized dataset. Granger causality was employed
to compute 64x64 directional connectivity matrices, capturing inter-electrode information
flow. Feature selection through t-tests identified 2,777 significant connectivity differences (p
< 0.05), which were subsequently used to train a Random Forest (RF) classifier. To address
class imbalance, balanced training subsets were created. Additionally, the robustness of the
model was evaluated under varying levels of white Gaussian noise (0% to45%).

Results: The Random Forest classifier demonstrated high diagnostic accuracy (99.24%),
sensitivity (98.34%), specificity (99.73%), and an Fl-score of 98.91% across 100 iterations,
effectively minimizing the risks of overfitting. Its performance remained robust under varying
train-test splits and substantial noise levels, with an/Fl-score of 92% even with 45% white
Gaussian noise. Feature selection significantly ‘enhanced noise resilience and classification
stability. Connectivity analysis revealed that central(Cz, FCz), occipito-parietal (PO3, Oz), and
inferior (1z) regions were key discriminators, indicating disrupted fronto-temporal and sensory
integration networks in individuals with.schizophrenia.

Conclusion: This study highlights the feasibility of ML-driven ERP connectivity analysis as a
non-invasive tool for the early detection of SZ. Achieving near-perfect accuracy, the model
demonstrates strong generalizability, interpretability, and clinical scalability, outperforming
deep learning counterparts .while relying on a minimal, targeted feature set. The findings
underscore the diagnostic relevance of fronto-central and occipito-parietal connectivity
patterns. While promising as a non-invasive diagnostic adjunct, future validation on larger,
demographically diverse cohorts is essential.

Keywords: ERP, Diagnosis, Schizophrenia, Effective Connectivity, Machine Learning, Classification.



Introduction

Schizophrenia (SZ) is a chronic mental disorder with a polygenic basis and
an 80% heritability rate. It is characterized by symptoms such as hallucinations,
delusions, disorganized behavior, and progressive cognitive impairments (1). It
affects approximately 20 million people worldwide (2). Early diagnosis and
intervention can significantly impact the lives of affected individuals. Early
diagnosis allows for prompt intervention of psychotic symptoms. (e.g.;
hallucinations, delusions, and disorganized thinking) before they become more
severe, improves outcomes and long-term prognosis (e:g., . daily-life
functioning, stability in social, academic, or work life), and prevents or delays
relapses and lessens the likelihood of hospital admissions (3—6). Early diagnosis
can also help to lessen the disabling aspects of the disorder (e.g., cognitive
impairments or social isolation) and improve the quality of life for patients and
family (7).

While timely detection of schizophrenia is crucial, detection is heavily
reliant on manual evaluation during.clinical assessment (8). This conventional
approach to clinical diagnosis.is challenging due to the high heterogeneity of SZ
(9). SZ can manifest differently across individual patients and throughout the
disease, with some/patients predominantly presenting positive and others
negative and cognitive symptoms (10). SZ can also show symptom overlap with
other psychiatric disorders (e.g., depression), making differential diagnosis
difficult"without a comprehensive understanding of the patient's medical
history.(10). The subjective nature of manual evaluation is prone to human
error and time-consuming (11).

Symptom onset in SZ typically occurs during adolescence and early
adulthood (between 14 and 30). The time between symptom onset and
diagnosis and treatment is consistently found to be one of the best predictors
of later prognosis (12). The prodromal stage, during which initial symptoms
may manifest, is a critical period for identifying and intervening in the
progression of SZ. is While cognitive symptoms can be apparent even before

this stage, detecting them for diagnostic purposes is especially challenging due



to their ambiguity, as they are often mild or nonspecific.

When symptoms are ambiguous, individuals at risk of schizophrenia may
show irregularities in resting-state and task-related EEG activity (13,14). These
can include alterations in the temporal dynamics, coordination and functional
connectivity between different brain regions (e.g., instability in dynamic
functional connectivity, hypo- and hyper-connectivity) compared to healthy
individuals (15—-19). Altered brain activity patterns might provide valuable

insights into the likelihood of developing schizophrenia.

We explored the feasibility of a novel approach to EEG dynamic.analysis
based on estimates of functional or effective brain connectivity in.combination
with machine learning (ML) techniques and algorithms to aid earnly diagnosis of
SZ. The rationale for applying EEG Dynamic Analysis for SZ detection is that SZ
many be considered as a disorder of brain network organization (20). In the
present study, we re-applied a novel feature “extraction approach called
Dynamic Connectivity Matrices (DCM).and utilized the generated features in
combination with an ML algorithm that was previously developed to identify
based on their unique patterns. of dynamic functional connectivity in EEG (21).
Standard EEG data were acquired. from a clinically well-characterized cohort of
adult patients. Using Electroencephalography (EEG) and Event Related
Potential (ERP) data,.the expectation was that this approach to EEG dynamic
analysis would accurately distinguish individuals with schizophrenia from those
without. To inform further development of this approach, we asked which
combination of metrics is most informative for accurately classifying SZ.
Evaluation criteria were the accuracy, sensitivity and specificity of ML-based

classification of clinically diagnosed SZ patients and healthy individuals.

Methods

Dataset and Participants

We conducted a retrospective analysis of EEG data from N=81 participants
sourced from a publicly accessible and anonymized dataset
(https://www.kaggle.com/datasets/broach/ button-tone-sz). The EEG dataset
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used in this study was obtained from a publicly available source
(www.kaggle.com). According to the dataset description, informed consent
had already been obtained from all participants for further use, and the data was
fully anonymized. Therefore, no additional ethical approval or consent was
required for its use in this study. However, all methods and analyses were
conducted in accordance with the relevant guidelines and regulations, and the
study protocol was approved by the Research Ethics Committee of Bagiyatallah
University of Medical Sciences (Ethics code: IR.BMSU.BAQ.REC.1403.147). This
dataset includes EEG signals acquired from n=49 SZ patients (41 male, between
22 and 63 years, M= 40.0; SD=13.5) (17 in early stages and 32.in chronic stages
of the disorder) and n= 32 healthy controls (26 male, between 22'and 63 years,
M= 38.2; SD=13.0). Data was acquired while participants performed a passive
(auditory-only) condition of a basic auditory listening task. All patients were
clinically diagnosed using Structured Clinical. Interview for DSM-IV (SCID).

Patients and healthy controls had no other diagnoses.

Data acquisition

EEG data were captured with a 64-channel Active Two Biosemi system (22)
and cap, following the 10-10 international system, while participants engaged
in the auditory listening task. This task entailed the presentation of 100
auditory stimuli~(1000 Hz tones at 80 dB SPL for a duration of 50 ms.) with
inter-stimulus.intervals (ISIs) varying between 1000 and 2000 milliseconds. EEG
signals~were recorded continuously and divided into separate ERP epochs of
3000.ms. Those were synchronized with the onset of each tone. The dataset
also includes data acquired from an auditory-motor task (23,24) that were not
used in the present study. The data were collected at a sampling frequency of

1024 Hz and down sampled to 512 Hz.

EEG Preprocessing and Epoching

The EEG dataset was originally preprocessed and cleaned for a previously

published study (23,25) and further processed and cleaned by the same
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authors prior to public release. Utilizing a publicly available dataset promotes
research transparency, facilitates reproducibility, and supports further
investigation by other researchers.

The preprocessing steps included re-referencing to averaged earlobe
electrodes, band-pass filtering between 0.5 and 15 Hz, and Independent
Component Analysis (ICA) for the identification and removal of ocular and
muscular artifacts. A regression-based algorithm was applied to correct for eye
movement and blink activity across all scalp channels. Artifact rejection was
performed using a £100 uV threshold at each electrode, and non-physiological
channels were interpolated based on established spatial criteria: These
procedures ensured high-quality, artifact-free EEG data ‘suitable for
connectivity analysis.

For this study, the preprocessed EEG signals were:segmented into 3000-ms
epochs, each time-locked to the onset of .the. auditory stimulus. Baseline
correction was applied using the window. beginning 600 ms to 500 ms before

tone onset.



Signal processing and epochs

Unlike traditional ERP analysis, which relies on averaging epochs to extract
features, our approach treated each epoch as an independent sample. This
single-trial analysis significantly expanded the dataset size, enabling the model
to capture subtle inter-trial variability in neural activity. This is advantageous for
studying complex neurological disorders like SZ, where subtle differences in
neural responses may be obscured by averaging. By analyzing each_epoch

individually, finer-grained neural patterns were sought in line with recent
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Fig. 1. Time-domain EEG connectivity analysis using coherence Granger causality for
ERP classification. The epochs were 3000 milliseconds (ms) in length and time-locked
to the onset of the auditory stimulus (i.e., the tone). Granger causality was computed
for the 3000-ms epoch and created 64*64 matrices for each epoch. The workflow
illustrates the processing of cleaning the EEG data and epoching it into stable segments
representing Event-Related Potentials (ERPs) for both training and testing. Coherence
Granger causality was applied to each epoch to assess directional information flow
between 64 EEG electrodes in the time domain, producing a 64x64 coherence matrix
indicative of pairwise electrode connectivity. These matrices served as features for a
Random Forest (RF) classifier. Classification assessment involved a voting process
across participants, trained on the training participants and evaluated on each event
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in test participant separately. Feature extractor

Our classification framework is based on a novel and previously validated
subject identification method (21). This method uses surface-level (electrode-
based) functional connectivity in the time domain, computed over short,
overlapping temporal windows, and generates Temporal Dynamic Connectivity
Matrices (TDCMs), which capture the evolving patterns of interaction between
EEG electrodes. Within each temporal window, the statistical relationship =
whether correlational or causal - is quantified between pairs of EEG time series.
This dynamic representation enables fine-grained tracking of brain.network
changes over time and has been adapted in the present study.to serveas input
features for classifying SZ-related neural activity.

The clean EEG data were divided into epochs, each deemed sufficiently
stable for connectivity analysis. Within each epoch, coherence Granger
causality was used to assess interactions between EEG signals from different
electrodes in the time domain (see Figure '1). Causation, or directional
connectivity, was used to evaluate how much activity in one EEG electrode
could predict activity in another. All analyses were performed in the time
domain, with the exception of the initial filtering stage. An iterative method
was employed to determine the interaction between each seed electrode and
every other electrode, producing a 64x64 matrix that illustrates the pairwise
connectivity among all electrode pairs.

Granger causality is a statistical method used to assess whether one time-
seriesrecan, predict another. If past values of variable X significantly improve the
prediction of variable Y— beyond what is possible using Y's own history—X is
said to "Granger-cause" Y. This is typically evaluated using a linear regression
model, where the target time series is regressed on its own past values and
those of another series; statistical significance of the latter indicates predictive
influence.

In EEG analysis, Granger causality is applied to identify directional
interactions between brain regions, providing insight into neural connectivity
associated with cognitive processes and disorders such as SZ (26,27).

Importantly, Granger causality reflects predictive, not necessarily direct, causal
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relationships, suggesting information flow from electrode to another.
Granger Causality is computed as follows:

1. Model Specification:
- Two time-series, X and Y, are examined.

- Aregression model is constructed for Y based on its previous values in

conjunction with the past values of Y.
2. Lag Selection:

- Identify the appropriate lags for the time series. This can be achieved
through metrics like the Akaike Information Criterion (AIC) or the
Bayesian Information Criterion (BIC).

3. Regression Analysis:

- Conduct two regression analyses:

- Model 1:

Yi=ap+a1Yeq1+arYep+..+a, Y,

- Model 2: Model 2 includes past values of X.

Yi=ag+a1Yi1tarYe ot +ayYion+ 01 X1 + X+ +
CnXt—n

4. Hypothesis Testing:

- The null hypothesis_Hoposits that X does not Granger-cause Y (i.e., the
coefficients

€1,Cp,.. are equaltozero).
- Implement an F-test to juxtapose the two models. Should the inclusion of
X substantively enhance the predictive capacity for Y, the null hypothesis

is.rejected, indicating that X Granger-causes Y.

To ensure consistency and avoid model complexity or potential overfitting,
we did not perform individual model selection using information criteria such
as BIC or AIC. Instead, we set the model lag order to a fixed value of 10 across
all participants and conditions. This approach simplifies the analysis pipeline
and ensures cross-subject comparability while remaining within the range
generally adequate to capture relevant temporal dependencies in EEG time

series data.
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Machine learning procedures

The number of participants in each group is unbalanced, with 32 healthy
individuals and 49 individuals with schizophrenia. To prevent unbalanced
learning, we used the HC sample, chose half for training, and picked an equal
number of participants from the schizophrenia group. This led to 16
participants chosen at random from each group for training. We subsequently
categorized the remaining healthy participants and individuals with
schizophrenia. This approach reduces the classifier's performance but
improves its dependability for evaluating each extra participant. The
classifiers are fed directly by the connectivity matrices. Every training step,
along with the classifiers, was performed on the training set.“The number of
epochs for each participant remains the same.

To mitigate the potential for overfitting, a‘particular concern in smaller
datasets with k- fold cross-validation, we employed a 50/50 train-test split. This
approach aimed to maximize data utilization.while minimizing overfitting risk.
Prior to classification, a feature selection phase was conducted to refine the
feature space and potentially enhance model performance. Independent two-
sample t-tests were performed on the training datasets to identify connectivity
features exhibiting statistically significant differences (p < 0.05) between the
defined groups: healthy controls and individuals with SZ. Only these features
were retained.AS input features for the classification algorithms.

This feature selection approach was designed to reduce dimensionality,
minimize .noise and improve model performance by focusing on the most
salient and discriminatory features. This enhances the model's ability to
accurately categorize individuals into their respective diagnostic groups and
the interpretability of the model by highlighting neural connectivity patterns
associated with SZ.

The feature set comprised 64*64*100 epochs, indicating that each
participant contributed 100 samples, each with 64*64 features. Consequently,
the training set for each class consisted of 16*100 samples, each with 1*4096

elements (i.e., a 1x4096 feature vector). The final training set was structured as
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a matrix with 3200 rows (samples) and 4096 columns (connections). An
additional column was appended to the data as the class label, indicating group
membership (SZ or non-SZ). A t-test was conducted based on this class label.
The classification of each epoch within the test set was performed
independently. A participant was classified as SZ if a majority of epochs (at
least 51 out of 100) were labeled as SZ; otherwise, they were classified as non-

SZ.

Classification

The classification process was performed on all test epochs. The classification
set was determined according to the following criteria: Participants were
labeled SZ or non-SZ based on the majority classification of their epochs. Those
with an equal number of SZ and non-SZ epochs would'have been designated as
unknown; however, no participants fell into. this' category in the current

dataset.

Classifier

The RF algorithm (28) ‘is a. rebust machine learning algorithm and
particularly effective for_classification tasks, including medical diagnosis
prediction. It operates by constructing an ensemble of decision trees, each
trained on a random subset of the data. This bootstrapping approach ensures
that each tree.learns diverse aspects of the data, mitigating overfitting and
improving generalization. In predicting, every tree in the forest votes, and the
most common class or the average prediction is selected as the result. This
collective characteristic provides multiple benefits (21):

® Great Precision: The combined knowledge of several trees frequently

results in very precise predictions.

o Resilience to Noise: The algorithm remains strong against noisy data

and outliers because of the ensemble's averaging impact.

e Evaluation of Feature Importance: Random Forest offers insights into

the significance of various features, assisting in feature selection and

aiding in comprehending the fundamental patterns present in the data.
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e Managing Absent Data: It efficiently manages absent data in the dataset.
e Scalability: Random Forest effectively manages extensive datasets,

rendering it appropriate for practical applications.

Classification Assessment

Accuracy assesses the overall correctness of a model's predictions,
indicating the ratio of correctly classified cases to the total instances. Although
high accuracy often suggests strong performance, it can be deceptivein
imbalanced datasets where one class greatly exceeds the other. Sensitivity,
referred to as recall, evaluates the model's capacity to accurately identify
positive cases, which is essential when the penalty for failing“to detect a
positive instance is significant. On the other hand, specificity evaluates the
model's capacity to accurately recognize negative instances, which is essential
when the misclassification of a negative instance can lead to serious outcomes.
The F1-score, which is the harmonic mean.of precision and recall, offers a single
measurement that balances both®factors, especially useful in imbalanced
datasets.

Selecting the appropriate "‘metric relates to accurately detecting both
positive and negative cases. Note that there is frequently a compromise

between sensitivity and'specificity;
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enhancing one usually results in a decline of the other. In addition, accuracy may
be misleading in imbalanced datasets, as metrics such as sensitivity, specificity,
and F1-score provide a more nuanced assessment of model effectiveness.

An additional strategy was implemented to evaluate the robustness of the
classification outcomes. This strategy relates to the following consideration. if a
neural network is trained to recognize stimuli, its performance should remain
consistent when identifying stimuli, like faces, from various angles, under
differing lighting conditions, or when presented with partial facial features
(21,29). This means that the classifier must retain accuracy even when target
stimuli are altered or degraded. To replicate such scenarios, white  Gaussian
noise was incrementally introduced into the test dataset’s ‘connectivity
matrices. Initially, the classification analysis was conducted-without noise (0%
noise level). Subsequently, noise was linearly added to.all features in increasing
increments, starting at 5% and progressing t0.45%. This process resulted in
nine distinct ten conditions (0%, 5%,'10%, 15%, ..., 45%), each subjected to

separate classification evaluations.

Results

The RF model showed-very high overall performance through various
assessment metrics, ‘evaluated over 100 iterations to reduce the impact of
overfittingand random effects (see Table 1). Sensitivity, a metric reflecting the
model's .abilitysto correctly identify positive instances, reached 0.98, with a
confidence“interval of 98.3410.04%. This indicates that the model was highly
accurate in detecting the target condition when it was present. Similarly,
specificity, which evaluates the model's ability to correctly identify negative
instances, achieved a perfect score of 1.00 with a confidence interval of
99.73+0.01%, demonstrating that the model did not mislabel any negative
cases. The F1 score, balancing precision and recall, was also high at 0.99 with a
confidence interval of 98.91+0.02%, emphasizing the model's strong predictive
capacity. Finally, the overall accuracy of the model, determined by the

proportion of accurate predictions, was 0.99 with a confidence interval of
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99.24+40.02%, indicating that the model generated highly accurate predictions
on the dataset.

Table 1. Overall result for 100 runs.

Feature Metrics | Mean | Standard Confidence Interval Confidence Interval

Selection Deviation Lower Upper
Sensitivity| 67.78% 1.79% 67.42% 68.14%
Specificity| 98.73% 0.29% 98.67% 98.73%

All features pecticty 0 0 ° 0
F1 Score | 87.67% 0.79% 86.88% 87.22%
Accuracy | 87.05 | 0.86% 87.51% 87.84%
Sensitivity| 98.34% 0.16% 98.30% 98.38%

Selected Specificity| 99.73% 0.05% 99.72% 99.74%

electe

Feature F1 Score | 98.91% 0.10% 98.89% 98.93%
Accuracy | 99.24% 0.07% 99.23% 99.26%

Test Train Rate

Figure 2 demonstrates the impact ‘of the test rate on classification
performance. Notably, the RF classifier shows very high performance even with
relatively limited training sample, sizes. This is consistent with previous studies
that highlighted the effectiveness of RF classifiers in handling imbalanced
datasets and their ‘ability to generalize well to unseen data (30). However,
when the testing.rate approaches very high values (0.09 and 0.95), a decline in
classification accuracy is observed. This trend shows that while RF classifiers
are generally robust against data distribution, significant imbalances can still
negatively influence their performance. This finding aligns with current
research, suggesting that imbalanced datasets can pose challenges for ML
models, potentially leading to biased results. To confirm that the observed
performance trends were not a result of random factors, we methodically
adjusted the test rate from 5% to 95% of the overall epochs (see Table 2). This
method enabled us to evaluate the classifier's strength across various data
distributions. Despite a test rate of 95%, the RF classifier obtained an F1-score

of 92%, indicating its capability in managing imbalanced datasets.
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F1-Score vs. Test/Train Split Rate
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Fig. 2. Impact of the test/train rate on classification performance.
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Table 2. Impact of different test/train rates on Random Forrest classification

performance.

Test rate F1 Score Mean F1 Score SD Lower Cl F1 score  Upper Cl F1 Score
0.05 1.00 0.00 1.00 1.00
0.10 0.99 0.00 0.99 1.00
0.15 0.99 0.00 0.99 0.99
0.20 0.99 0.00 0.99 0.99
0.25 0.99 0.00 0.99 0.99
0.30 0.99 0.00 0.99 0.99
0.35 0.99 0.00 0.99 0.99
0.40 0.99 0.00 0.99 0.99
0.45 0.99 0.00 0.99 0.99
0.50 0.99 0.00 0.99 0:99
0.55 0.99 0.00 0.99 0.99
0.60 0.98 0.00 0.98 0.98
0.65 0.98 0.00 0.98 0.98
0.70 0.97 0.00 0.97 0.97
0.75 0.98 0.00 0.98 0.98
0.80 0.98 0.00 0.98 0.98
0.85 0.97 0.00 0.97 0.97
0.90 0.94 0.00 0.94 0.94
0.95 0.92 0.01 0.92 0.92
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Noise stability

Figure 3 illustrates how rising levels of white Gaussian noise affect the
classification performance of two sets of features: "All Features" and "Selected
Features Noise was progressively introduced to the connectivity matrices of the
test dataset, simulating scenarios in which target stimuli are modified or
compromised. The x-axis represents the percentage of introduced noise,
ranging from 0% (no noise) to 45%, while the y-axis displays the Fl-score, a
metric that quantifies classification accuracy. As the percentage of noise
increases, both feature sets exhibit a decline in F1-score, indicating a reduction
in classification effectiveness. However, the "Selected Features" (blue line)
demonstrate greater resilience to noise, consistently achieving a higher F1-
score than the "All Features" set (red line) across all noise levels. This suggests
that the "Selected Features" are more robust against the detrimental effects of
noise and provide more reliable classification,even when the data is

compromised.
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F1-Score Trend with Added Noise
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Fig. 3. Noise stability._and classification performance. This figure illustrates for all
(blue line) and selected features (red line) the percentage of added noise, ranging
from 0% (no noise) to 45% on the x-axis against the Fl-score (i.e., classification
accuracy) onwthe y-axis. Error bars represent confidence intervals of the Fl-score
calculated over,100 runs or folds.
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Electrode contribution to classification

Through a comprehensive analysis of Granger causality across all 64x64
electrode pair combinations, we identified 2,777 connections that exhibited
statistically significant differences between the healthy control (HC) and SZ
groups (p-values ranging from 0.049 t01074) on the basis of trained datasets.
Table 3 presents the most discriminatory Granger causality combinations,
characterized by particularly robust statistical significance (p < 103°). Tofurther
investigate the regional brain areas most implicated in these group differences,
we created a frequency table. This table is based on all Granger. causality
combinations that demonstrate significant group separation (p. < 0.05), and
counts how often each electrode appears as either a predictor or a predicted
region across these significant connections. The most frequently identified
electrodes through this process will be presented in a-subsequent table, aiming
to highlight key regions involved in. connectivity alterations related to

schizophrenia.
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Table 3. Granger causality combinations that significantly differentiate the healthy and SZ
groups (E = Power of ten).

# Independent Dependent P-Value # Independent Dependent P-Value

1 PO3 Cz 4.61E-74 § 20 P7 FC3 1.05E-33
2 Fz Cz 5.81E-55 | 21 PO7 C1 1.82E-33
3 TP7 PO3 2.24E-54 | 22 0z TP10 5.76E-33
4 PO3 FCz 7.41E-54 | 23 P7 C1 7.30E-33
5 TP7 Cc1 8.85E-51 | 24 Cl CP3 1.01E-32
6 T7 PO3 3.04E-48 | 25 PO3 FC3 2.33E-32
7 C5 PO3 3.41E-45 | 26 T7 C1 6.63E-32
8 PO3 FC1 6.17E-43 | 27 Fz PO3 6.95E-32
9 P3 FC1 451E-41 § 28 0Oz c2 7.05E-32
10 FC5 PO3 1.00E-40 § 29 Iz FCz 1.82E-31
11 P3 Cz 2.67E-40 | 30 0z FC2 4.72E-31
12 PO3 c2 2.98E-39 | 31 Cz CP4 4.96E-31
13 c3 POz 1.36E-37 | 32 P5 FC1 5.46E-31
14 0z Cz 1.34E-35 | 33 P4 P2 1.50E-30
15 AF3 FC5 4.70E-35 | 34 Fz FCz 2.99E-30
16 01 Cc2 1.35E-34 §.35 PO3 FC2 3.77E-30
17 01 FCz 2.14E-34 | 36 POz FCz 3.87E-30
18 P3 FCz 3770E-34 | 37 AF3 F5 6.32E-30
19 PO7 FCz 1.00E-33.] 38 Cz CP3 7.04E-30
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Following the identification of the 2,777 statistically significant Granger
causality combinations that differentiated the healthy control and
schizophrenia groups (p < 0.05), a frequency analysis was performed to
determine the most relevant electrode regions (see Table 4). This table reports
the top ten electrodes ranked by their total frequency of appearance in these
significant connections. For each electrode (column 1), the table shows its
frequency as a predictor electrode (column 2), its frequency as a predicted
electrode (column 3), and the summed total frequency (column 4). Higher total
frequency indicates greater involvement in group-discriminating . Granger
causality relationships.

Table 4. Frequency of electrode involvement in significant Granger causality
differences.

Electrode name | Predictor |(Predicted

Cz 51 58
FCz 47 59

Iz 50 55
PO3 49 55
CP4 42 61
AF3 47 54

(oi} 45 56

01 48 53
POz 54 46

Discussion

The present study was guided by two primary research questions: Is it
possible to identify SZ using our novel EEG-based ML classifier based on DCM,
and which combination of metrics is most informative for classifying SZ? The
DCM-ML approach identified SZ to a very high degree of accuracy that
approached 100%. Our findings indicate that only a subset of metrics is
required to achieve effective classification of individual participants,

highlighting the efficiency and specificity of the selected features. These results
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underscore the potential of using targeted metrics to enhance the precision of
SZ detection.

The RF model demonstrated very high performance across various metrics.
It achieved a sensitivity of 0.98 (98.34% + 0.04%), indicating its proficiency in
accurately identifying positive cases. In addition, it exhibited a perfect
specificity of 1.00 (99.73% + 0.01%), demonstrating its performance in
correctly classify negative instances without mislabeling. The model also
achieved a high F1 score of 0.99 (98.91% + 0.02%), indicating a strongbalance
between precision and recall. Furthermore, the overall accuracy. was 0.99
(99.24% + 0.02%), which is consistent with the model's ability to generate
highly accurate predictions on the dataset. These results underscore the
potential of targeted metrics in enhancing the precision_of schizophrenia
diagnosis.

The study also assessed the stability of the.proposed classification method
under different conditions. The introduction of white Gaussian noise led to a
gradual, but predictable, decline in.classification performance. Up to a noise
level of 10% of the data, the“accuracy remained above 95%, demonstrating
considerable resilience. However, beyond 10%, the accuracy decreased more
rapidly, highlighting the. sensitivity of ERP-based connectivity measures to
excessive noise. This underscores the importance of stringent data acquisition
protocols and noise reduction techniques in ERP studies.

The\RF classifier exhibited strong performance across different training
sample. sizes, demonstrating its ability to generalize effectively even with
limited “data. This finding is consistent with prior research, which has
emphasized the robustness of RF classifiers in handling imbalanced datasets
and their capacity to maintain high accuracy under constrained conditions.
However, when the testing rate approached extreme values (0.09 and 0.95), a
decline in classification accuracy was observed. This suggests that while RF
classifiers are generally resilient to variations in data distribution, significant
imbalances can still adversely affect their performance (21,29,31-33).

Our findings on the specific ERP components and inter-electrode

connectivity patterns offer valuable insights into the neurophysiological
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underpinnings of SZ. Notably, our analysis revealed that a subset of
electrodes—Cz, FCz, 1z, PO3, CP4, AF3, C1, O1, and POz—were particularly
influential in distinguishing individuals with schizophrenia from healthy
controls. This emphasis on a targeted set of electrodes strikes a balance
between diagnostic accuracy and the practical considerations of clinical EEG
procedures.

The prominence of central midline electrodes, particularly Cz and FCz, in
our findings aligns with existing literature that emphasizes the role of these
regions in SZ pathophysiology. As highlighted in the literature, Cz is consistently
identified as a core component in optimal electrode subsets for 'schizophrenia
detection, likely due to its sensitivity to global neural dynamics‘and altered
connectivity patterns in resting-state paradigms (34,35). The involvement of
FCz, while sometimes represented by the functionally. proximal Fz in standard
montages, further supports the importance of »frontocentral activity in
capturing auditory- evoked anomaliesiand deficits related to auditory steady-
state responses (ASSR) in schizophrenia. (36). These findings suggest that
disruptions in information processing.and sensory integration, often observed
in SZ, are reflected in the altered activity and connectivity of these central and
frontocentral regions.

The present study-also identified other key electrodes, including those in
occipital (O1, POz), parietal (CP4), and frontal (AF3) regions, as contributing to
accurate, classification. The involvement of O1 aligns with evidence of visual
processing abnormalities and default mode network disruptions in
schizophrenia (34,37). While POz, CP4, and AF3 may not have been as
extensively studied in classification frameworks, their inclusion in our model
and their presence in network analyses suggest their potential role in capturing
specific aspects of the disorder, such as visuospatial integration deficits (POz),
right-lateralized connectivity abnormalities (CP4), and prefrontal cortex
dysfunction (AF3). The inclusion of C1, near the primary somatosensory cortex,
points towards possible sensorimotor integration abnormalities in SZ, though
further research is needed to validate its specific contribution to classification

models. The relative lack of direct evidence for Iz in the literature®® suggests its
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limited diagnostic value within current paradigms. Taken together, these
results indicate that a distributed network of brain regions, extending beyond
the frontal cortex, contributes to the neurophysiological signature of
schizophrenia.

Imbalanced datasets pose challenges in machine learning. The present
results align with existing literature in this regard*.The observed decline in
accuracy at very high testing rates highlights the potential for biased outcomes
when data distributions are significantly skewed. This emphasizes the need for
careful consideration of dataset composition and the application of strategies to
mitigate the effects of imbalance, such as resampling techniques or algorithmic
adjustments, to ensure the reliability and generalizability of “classification

models.
Comparison of the model with other models

The dataset used in this study has been, previously analyzed, using both
traditional machine learning algorithms(38—40) and recent deep learning
methods (41-45). These studies have established performance benchmarks
and demonstrated the dataset’s\walue for detecting neuropsychiatric disorders
like SZ.

Although deep*learning techniques have achieved high accuracy (up to
97%), their complexity, large model sizes, and high computational demands
often limit their applicability in time-sensitive, real-world clinical settings.

To address this limitation, this present study presents a novel,
computationally efficient machine learning model applied to the same dataset.
This approach achieves an extremely high classification accuracy (99.24%,
98.34%, 99.73%) with no need for deep hierarchical networks or dense feature
engineering. Extracting ERPs from a cognitive auditory task, we observe task-
related brain dynamics and construct directional DCMs according to Granger
causality. This approach also accurately maps inter-electrode information flow
while preserving single-trial variability —an essential dimension usually lost to
average-based or resting-state methods.

Compared to existing work, our approach displays several distinctive
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advantages. For instance, Chen et al (46). use resting-state EEG and dynamic
functional connectivity to achieve multi-class classification of various
psychiatric disorders with moderate accuracy (73.1%). However, their method
is based on averaged DFC states and does not account for signal variability or
noise resistance. Our method, by contrast, relies on single-trial ERP data,
retaining inter-epoch variability and exhibiting significant robustness to noise
with an F1- score of 92% even in the presence of 45% Gaussian noise—a point
fully unexplored in their work.

Similarly, Shen et al. (47) employ cross-mutual information in the alpha
band and a 3D CNN for SZ discrimination from resting-state EEG with"97.74%
accuracy. Their approach is effective but relies on undirected, frequency-
specific connectivity rather than the temporal specificity’ our ERP-based
paradigm enables. Our model not only leads to better accuracy but also offers
greater interpretability and clinical utility through'the selection of directionality
patterns of connectivity and electrode-level biomarkers, particularly in fronto-
central and occipito-parietal regions.that are critical to SZ pathology.

A further recent paper (48)utilising Symbolic Transfer Entropy (STE) on
resting-state EEG also has high performance (96.92%) with minimal features. In
the absence of task engagement, however, their approach may lose critical
neurocognitive signatures of SZ. Our DCM-based model, with direction-aware
task-evoked P300 responses, can extract functional impairments in challenging
cognitive conditions and is facilitated by direction-aware DCMs, offering a
more.~comprehensive description of inter-regional interactions. Again, our
model's“noise resistance and ability to maintain subtle pathological signals

through single-trial analysis position it as a more clinically viable instrument.
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Table 5: Comparative Summary of Studies Using the Button-Tone-SZ Dataset

Study/Year

Model & Features

Performance

Al Mazroa, 2025 [49]

Barros[25]

Shaffi, Rani, Srinivasan,

Huang [27,38-40]

Shen [47]

Chen[46].

Cascaded Atrous Conv. Network (CA-AWFM); multi-

scale adaptive fusion

Deep CNN (SzNet), single-trial ERP, 5 midline
electrodes (Fz, FCz, Cz, CPz, Pz)

CNNs, classical ML (RF, SVM, LDA)

Cross-mutual information in the alpha band and a

3D CNN

resting-state EEG and dynamic functional

99.5% accuracy

78% accuracy

Variable (75-85%)

97.44% accuracy

73.1% accuracy

connectivity

Compared to a range of recent studies that.have employed both deep
learning and classical machine learning techniques for SZ detection using EEG
or ERP data, the present study offers a unique combination of interpretability,
robustness, and clinical relevance. While several approaches report high
classification accuracies —{ for. example, 99.5% using a Cascaded Atrous
Convolutional Network (CA-AWFM)(49) with multi-scale feature fusion and
99.9% via ERP featlre integration and demographics — these methods often
rely on black- box architectures or require multimodal data inputs, which can
limit clinical transparency and scalability. In contrast, our study achieves
comparably high accuracy (99.24%) using a single- modality ERP dataset and a
RF.classifier trained on features derived from directional DCMs computed with
Granger causality. This approach emphasizes inter-regional information flow, a
critical neural marker often overlooked in frequency-domain or undirected
methods.

While methods like SchizoGooglLeNet and Multiple Kernel Learning (MKL)
also achieve strong results (50,51), they typically depend on either large-scale
automated feature extraction or fusion of multiple ERP components (e.g.,

P300, MMN), requiring extensive preprocessing pipelines. Our model, by
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contrast, is noise-resilient—maintaining a 92% F1- score even under 45% added
Gaussian noise—and uses single-trial data to preserve the subtle inter-epoch
variability vital for identifying schizophrenia-related deficits. In addition, our
identification of clinically relevant electrode-level patterns in fronto-central
and occipito- parietal regions makes the findings more explainable and suitable
for integration into real- time or portable diagnostic tools.

While deep learning models such as those of Mazroa et al. (49)
demonstrate impressive levels of accuracy, their complexity, < limited
interpretability and reliance on resting-state signals or black-box convolutional
layers hinder real-world deployment. In contrast, our method “balances
accuracy, interpretability, and practicality, making it a well-suited‘for scalable
clinical translation — especially for early SZ detection«n settings with limited
computational resources and variable signal quality.

In summary, the present approach overcomes limitations of existing
methods by combining interpretable “directionality features with a high-
performance yet lightweight classifier to a practical, scalable, and highly
accurate means to early SZ diagnosis.

This approach has the potential to bridge algorithmic performance with

real-world clinical usability:

Limitations and future work

From a.clinical perspective, this approach shows promise as a
complementary tool for early diagnosis of SZ. At this stage, our study serves as a
proof-of-concept of our ML-approach and the results should be interpreted in
terms of feasibility of this ML-based classifier for clinical application. The
findings suggest that the ML-based classifier may detect early-phase EEG
abnormalities associated with SZ. s. However, predictive models must also
account for the variability in individual disease progression. Additionally, the
current dataset does not allow for an assessment of whether these
abnormalities overlap with other mental health conditions. Future
development of the current approach should consider disease progression and
comorbidities within a demographically and clinically broader and more diverse
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dataset than that used in this study to verify the method's reliability and
clinical applicability. This could be supported by acquiring longitudinal data to
identify consistent patterns of EEG abnormalities (and changes in these
patterns) prior to the prodromal phase, throughout the prodromal transition,
and after the onset of psychosis. Such data could serve as a foundation for
developing reliable predictive markers. Although the high accuracy of the
model is promising, understanding the specific features or patterns that
influence the predictions is crucial. Integrating this approach with multimodal
data (e.g., biomarkers and clinical evaluations) may enhance .diagnostic
accuracy. Further efforts to improve the model's interpretability=will be

essential for its integration into clinical practice.

Conclusion

The tested approach using a novel EEG-based. classifier based on dynamic
connectivity matrices and machine learning algorithms marks a considerable
improvement in the use of dynamic EEG-analysis for SZ detection. The very
high Fl1l-score demonstrates the. capability of computational methods to
support psychiatric diagnostics, providing an objective and non- invasive
instrument for early detection and intervention. This approach needs
additional refinement and validation based on demographically and clinically

broader dataset to'verify its reliability and applicability.
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